November 29th
Update

Grid-SIEM Group 29

An Approach to ML and Security Onion

New option from SecurityOnion posted 2 days ago
LogScan
Provided with Security Onion version 2.3
Only focuses on detecting anomalies in logs
Requires the vCPU to have AVX support(AVX2 recommended for better performance)
Not currently compatible with air gapped installations
Has the following model options:
K1: Searches for high numbers of login attempts from single IPs in a 1 minute window
K5: Searches for high ratios of login failures from single IPs in a 5 minute window
K60: Searches for abnormal patters of login failures from all IPs seen withina 1 hour window

It is log agnostic (interoperable among differenttypes) but the current implementation only scans
from built-in auth provider Kratos (identity management server)

Possible option to run alongside a custom ML implementation

Another Option: Binary

Classification & Anomaly Detection

(next slide)

Binary classification

Given a population of malicious and normal logs -

finding the best function that separates them into
two classes

Could be a line could be some other delineation

The function that does reasonably well at separating
the two classes is the binary classifier

Random Forest can be used in a binary classification
scenario

Classify known threats with high accuracy

Python libraries easiest to implement this with
Scikitlearn

Pandas
Numpy

Decision boundaries

PREDICTION PREDICTION PREDICTION
[i T
I MAJORITY VOTE TAKEN }—’| FINAL PREDICTION MADE

Anomaly Detection — i
. ©
Isolation Forests oo%g
50

RE~S
O
0°° & ©
Can be utilized to identify anomalies (zero 00

day)

Selects a random dimension and randomly
splits the data along that dimension

The resulting subspaces are each their own
sub-trees

Process is repeated until every leaf of the
tree represents a single data point from the .
dataset

Isolation of a normal pointtakes more splits
to single out which makes Isolation forests
much more usable when identifying outliers

Isolation of a normal point Isolation of an anomaly

Training, Testing & Evaluating a Model

2) pass

in

(1) pass in your malware log (which is a bro log)

«
/train_flows_rf.py -o data/http-malware.log http-training.log

<4— (3) Read the bro data files into pandas data frame
(a) each row is labeled either ‘benign’ or ‘malicious’

a4
<

now we run the ‘test’ data through the trained
model. It is still labeled, so we know what the
answer “should” be.

<+)
we compare the expected results with the actual
prediction and create a little table.

we don't expect perfect results, but we'd like to
1 see “most” of the data in the o/o and 1/1 rows

Identifying Training & Test Data

——
MALWARE-TRAFFIC-ANALYSIS NET |

J

contaqio _ S Al
(2) log thatin ~ (3) label as malicious iabeled

malware dumg pandas data or nen-malicious Data
frame g <

(1) run all data {
through bro

Sucurigfmean

(4) splitinto training

__-of test data

your training log (normal de

=
)
| & =~ |

®sqrrl

aining

Data

install scikit-learn for machine learning X - independent features
install pandas for data manipulation y - dependent features
install numpy for numerical operations

- . need both independent and dependent for
pip install scikit-learn pandas numpy training and test sets

Training set - trains the machine learning model

@mport pandas as pd Testing set - evaulates the performance of the model
import numpy as np

from sklearn.model_selection import train_test_split

Create a Pandas datafram from a Bro log
bro_df = LogToDataFrame('/path/to/dns.log")

clean the data accordingly

split the data into training and test sets
commonly 8@% training and 20% test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

train the random forest model

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(random_state = 42)
rf.fit(X_train, y_train)

Evaluate the Model

from sklearn.metrics import classification_report, accuracy_score
y_pred = rf.predict(X_test)

print(classification_report(y_test, y_pred))

print("Accuracy:", accuracy_score(y_test, y_pred))

determine the most influential features (individual atributes)
could include things like source/dest IP, source/dest port, protocol, packet size, etc

feature_importances = pd.DataFrame(rf.feature_importances_, index=X_train.columns,
columns=["'importance']).sort_values('importance', ascending=False)
print(feature_importances)

#isolation forest for anomaly detection

from sklearn.ensemble import IsolationForest

iso_f = IsolationForest(random_state=42)

iso_f.fit(X_train)

anomalies = iso_f.predict(X_test) # will return -1 for anomalieﬂ

Security @nion

Berkeley Packet Filter is a filtering system for the logs
and packet data that is coming through the SIEM.

Overview Grid Configuration Options A

L]
a
€ Dashboards P
3
s

The BPF filtering can be applied to Suricataand Zeek = +=_

for logs as well as Stenographer for PCAP data.

Suricata is the software thatis used for alerting, so
filters applied would be used to adjust alerting. o .

The tuning can all be done from the SOC on the o

||||||||||

manager node, and to start with BPF ignoring all traffic msrsssssssssss
and then including trafficto process.

Salt

Saltis the system that manages all processes on all
nodes in Security Onion.

Salt allows for code to be remotely executable on
minion nodes.

I

< %
saltmaster % — beacon minion1

Jfetc/hosts
reactor

fetc/salt/master.d/reactor.conf /fetc/salt/minion.d/beacons.conf

reactor: beacons:

Beacons are a tool in Salt that are used for
monitoring, they can monitor when afile is accessed
. Smmomoezes ==
or changed, shell activity, and network. mn Tetcostss e

/srv/salt/reactor/revert_etc_hosts.sls - interval: 5

- disable_during_state_run: True

revert_etc_hosts:
local.state.sls:

Beacons can also be used to trigger Reactors, which S st »
are another system in Salt that can be used to execute
code in response to a Beacon.

Collection Abilities

Name Tactic Technigue Technique ID
DNP3 Read Collection Automated Collection T0802
DNP3 Integrity Poll Collection Point & Tag Identification T0861

DNP3 Enable Unsolicited Mess Collection Automated Collection T0802

Inhibit Response Function Abilities

Name Tactic Technique Tecl
DNP3 Cold Restart Inhibit Response Function Device Restart/Shutdown TO8
D e p | O y < a | d e ra a 9 e ﬂt DNP3 Warm Restart Inhibit Response Function Device Restart/Shutdown TO8
DNP3 Disable Unsolicited Messages Inhibit Response Function Block Reporting Message T08
* g
Need to run a series of commands on impact fbiities
Name Tactic Technique Technique ID
. . . .
VI Ctl m m a C h I n e (S u bstatl O n R | l | O r DNP3 Ranged Modulate Breaker SBO Impact Manipulation of Control T0831
DNP3 Modulate Breaker SBO Impact Manipulation of Control T0831
S | E M S ’? DNP3 Toggle OFF Breakers SBO Impact Manipulation of Control T0831
e n S O r ° DNP3 Toggle ON Breakers SBO Impact Manipulation of Control T0831

DNP3 Modulate Bre:

Impact Manipulation of Control T0831

DNP3 Toggle OFF Breakers DO Impact Manipulation of Control T0831

Choose Adversary Profile

Tactic, technique, Ability

Shut off breaker Adversary ID: 6dec4970-c8aa-43bd-8e78-fc4dc0f709ce

Trips breaker

+ Add Ability + Add Adversary & Fact Breakdown Objective: default change E» Export -

Ordering Name Tactic Technique Executors Requires Unlocks EVGET| Cleanup

= 1 DNP3 Toggle OFF Breakers DO impact Manipulation of Control = A

Operation
Select new adversary, select "fact source"

Review operation after

Operation Details

Operation Name
Adversary

Fact Source
Group

Planner
Obfuscator
Autonomous
Parser

Auto Close

Jitter

Doing stuff

Do stuff

DNP3 Sample Facts
all

batch

plain-text
autonomous

true

false

218

End of Semester

Checklist

Submit our final draft for the [OWA STATE UNIVERSITY

Sonior Design Team sdmay24-29

Grid-SHEM: Cybersecurity for Power Grid using SIEM tools and Machine/Deop

engineering design document.

TEAMMEMSERS WEEXLY REPORTS DESIGN DOCUMENTS PROJECT REPOSITORY

Update the team website with Project Overview
our latest work. Pictures, bios,
reportS. Team Members

Prepare official slide deck for e
the upcoming presentation.

W

|CYB E] Mayor

https://sdmay24-29.sd.ece.iastate.edu/

https://sdmay24-29.sd.ece.iastate.edu/

	Slide 1: November 29th Update
	Slide 2: An Approach to ML and Security Onion
	Slide 3: Another Option: Binary Classification & Anomaly Detection (next slide)
	Slide 4: Anomaly Detection – Isolation Forests
	Slide 5: Rough Outline of Implementation Plan
	Slide 6: Security Onion Rule Tuning
	Slide 7: Salt
	Slide 8: Mitre Caldera
	Slide 9: Mitre Caldera
	Slide 10: End of Semester Checklist

